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Introduction: Objectives of these notes

The focus of the synchronous coding club meeting this week is on general computing concepts. These notes
will stray a bit from that focus because I want to introduce some R code that I did not last week. Hence,
these notes will include two distinct topics. The first topic will be contrasting coding and code performance
in an interpreted language (R) versus a compiled language (C). The second topic will be picking up where we
left off last week with the introduction to R programming. My hope is that there will be a bit of something
for everyone in these notes, including novices to coding and more advanced R users. If you are just getting
started, then it might make sense to skip the section contrasting interpreted versus compiled language and
move right to where we left off last week with more R code to help get started.

Contrasting interpreted versus compiled language

Almost all coding is done using source code; that is, code that can be read and understood by a human. To
actually run the code, we need to convert the source code into a binary format (ones and zeroes) that can
be read by the computer. To do this conversion, we can either compile the code or interpret it. Technically
speaking, any code could be compiled or interpreted, but most programming languages are associated with
one or the other method.

When compiling code, the source code is translated beforehand into a form that the computer can read more
easily. Only after this translation occurs is the code actually run, so the process of running code occurs
in two steps (compile, then run). The benefit of compiled code is that it can generally run much faster
(orders of magnitude faster); the cost is that writing compiled code is slower, more laborious, and often more
frustrating. Code that takes me 2-5 minutes in an interpreted language such as R could easily take 30-60
minutes in a compiled language such as C. But if the compiled code can finish running in minutes or hours
rather than days to weeks, then it might be worth the hassle.

When running interpreted code, individual chunks of code are run bit by bit through an interpreter. This
interpreter breaks down the code and executes it on the fly, so everything is done in one step (e.g., in R,
there is no compile then run – you just run the code in the console after you have written it). The cost
of this method is that the interpreted code can be much slower. The benefit is that the actual process of
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writing code is generally faster and more intuitive. For many tasks, speed is also not worry, so there is little
if any downside to avoiding the compiler.

In all types of code, binary instructions (compiled or interpreted) are sent to the computer’s Central Pro-
cessing Unit (CPU). What the CPU does with these instructions is actually quite limited; it can read and
write to memory, and do some basic arithmetic. All of the instructions that you type in your source code
essentially boil down to these tasks. The memory (specifically, ‘random-access memory’, or RAM) is sepa-
rate from the CPU; it holds data that can be read and changed. The data exist as binary units (ones and
zeroes), which are grouped in chunks of eight to make one ‘byte’. In relatively ‘high level’ programming
languages (e.g., R, MATLAB, python), you can more or less avoid thinking about all of this because the
code is abstracted away from the nuts and bolts of the computer hardware and the management of memory
is done behind the scenes. In more ‘low level’ programming languages (e.g., C, FORTRAN, COBOL), you
will need to be explicit about how your code uses the computer’s memory.

Let’s start by running a very simple script of code, first in an interpreted language (R), and then in a
compiled language (C). The code we write will count from one to one billion, printing every 100 millionth
number. Here is what the code looks like in R.

count_to_1_billion <- function(){
for(i in 1:1000000000){

if(i %% 100000000 == 0){
print(i);

}
}
return("Done!");

}

You can also find the Rscript with the code above on GitHub. Note that the above code defines a function
and includes a for loop. We will get to what these are doing in a later workshop, but for now, all that you
need to do is highlight the code above and run it in the console. This will define the function. To run the
function, you can then type the following line of code in the console.

count_to_1_billion();

Note, this might take a while! While you are waiting, you can create a new script for the compiled version
written in C. To do this, you can either download this file from GitHub or create a new script in Rstudio
and paste the following code.

# include <stdio.h>

int main(void){

long i;

for(i = 1; i < 1000000000; i++){
if(i % 100000000 == 0){

printf("%lu\n", i);
}

}
return 0;

}

Once pasted, save the file as count_to_1_billion.c (remember where you save it). If you get a box that
pops up asking “Are you sure you want to change the type of the file so that it is no longer an R script?”,
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then click “Yes”. Note that you could have also pasted the code into a text editor such as notepad or gedit
instead of Rstudio (but not in a word processor such as MS Word).

Now we need to compile the code. How you do this depends on the operating system that you use (Mac,
Linux, or Windows). I will first show how to compile and run for Mac and Linux, then how to compile and
run for Windows.

Mac and Linux Users

On Mac or Linux, you need to first open a terminal. You can do this by finding an external one on your
computer (e.g., do a search for ‘terminal’, and one should be available), or by using the ‘Terminal’ tab right
within Rstudio (see the middle tab below). Note that this Rstudio terminal is also available on a browser
through Rstudio cloud, so you can use the Rstudio cloud to do the whole exercise (just make sure you upload
the C file).

Once you are in the terminal, you need to make sure to get to the correct directory. The directory will
be in the same location as where you stored your count_to_1_billion.c file. To navigate to the correct
directory, we need to use the change directory cd command in the terminal. In my case, I have saved
count_to_1_billion.c to a folder called ‘loc_sim’ on my computer, so I will navigate to that folder with
the command below, typing cd loc_sim (hint cd .. moves you up a directory, if you ever need it) followed
by the ‘Enter’ key.

brad@brad-HP:~$ cd loc_sim

This puts me in the loc_sim directory. If I want to view the contents of this directory, I can type ls.

brad@brad-HP:~/loc_sim$ ls
count_to_1_billion.c

Now I need to compile code. To do this, I will run the gcc compiler and the following command.

brad@brad-HP:~/loc_sim$ gcc -Wall count_to_1_billion.c -o count_to_1_billion

The gcc compiler should be on most Linux and Mac computers. The -Wall above tells the compiler to give
us warnings if necessary, and the rest of the code tells us to use the count_to_1_billion.c file to build
the program count_to_1_billion. If there are no warnings, then the compiler should execute, and the new
program should show up in my ‘loc_sim’ folder. To run it, I can use the following code.

./count_to_1_billion

Notice the amount of time that took when compared to the equivalent R code.

Windows users

As with Mac and Linux users, you first need to open a terminal. Unfortunately, to access a compiler, you will
need to download some new tools. Microsoft windows does not actually come with a pre-installed compiler
for its command prompt, so we first need to download one form Visual Studio. Use the link to go to their
page and download the ‘Visual Studio’ Community version (free for students, open-source contributors, and
individuals). The most recent one at the time of writing is ‘Visual Studio 2019’. You will need to download
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and install this onto your machine. After Visual Studio is successfully installed, then you will also need to
install a Workload called ‘Desktop development with C++’ (see below).
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I might also recommend installing the Linux tools as well (scroll down to find these). Once these are
downloaded, then you can go into Visual Studio and create a new project.

From that new project, you can choose the ‘Empty Project’ option to start from scratch.

6



Browse through your files and find the repository where the count_to_1_billion.c file was saved (mine is
in ‘loc_sim’, as shown below). Select the folder.
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After this folder is selected, we can open a command line within Visual Studio by going to ‘Tools > Command
Line > Developer Command Prompt’.
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Once in the command prompt, we can use the DIR command to confirm that we are in the correct directory
with the count_to_1_billion.c file

C:\Users\User\loc_sim>DIR

We can now finally type the command to compile the code.

C:\Users\User\loc_sim>cl -Wall count_to_1_billion.c

Note that the command here is different from the Mac and Linux command. Once compiled (ignore any
notes), we can run the program ‘count_to_1_billion.exe’ with the command below.

C:\Users\User\loc_sim>count_to_1_billion.exe

This should produce an output like the one shown below.
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There are other ways to compile and run C code in Windows, but as far as I am aware, this is the most
straightforward. Note the contrast in the process of running the interpreted (R) versus compiled (C) code,
and the time that it took to run each. If you have made it this far, then you should have the basic tools
that you need to run compiled code in C. In the following section, we will look at some more R code.

More R code to help get started

As mentioned earlier, I want to pick up where the last session left off with some useful things to know about
coding in R. This is not in any way a comprehensive list of things to know before you start to program in
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R. What I want to do is provide some additional tips for getting started, mainly things that I learned (or
wish I had learned) when first learning to code in R. In the last session, I introduced some coding ideas
and functions for getting started with basic statistical tools (functions introduced last time were read.csv,
head, dim, hist, summary, plot, cor.test, lm, t.test, and aov). Here I will focus more on data wrangling
(i.e., cleaning and transforming data). We can start by loading the same Bumpus sparrow data set from last
time, which you can download here (right click ‘Bumpus_data.csv’ and save) or here. Make sure that you
are in the correct working directory before getting started (i.e., the directory where the Bumpus data file
is located). If you need to change directories, you can go to the Rstudio toolbar and select ‘Session > Set
Working Directory > Choose Directory’ and select the directory.

We can also select the working directory directly from the command line.

setwd("~/Dropbox/projects/StirlingCodingClub/coding_types");

Note that your own path will look different than mine, especially if you are running Windows. From here,
we can read in the Bumpus CSV file and assign it to the variable named dat.

dat <- read.csv(file = "Bumpus_data.csv", header = TRUE);

We now have our data set read into R. We can confirm that everything looks good by inspecting the first six
rows of the dataset using the head function (note, the equivalent function tail gives us the last six rows).

head(dat);

## sex surv totlen wingext wgt head humer femur tibio skull stern
## 1 male alive 154 241 24.5 31.2 0.687 0.668 1.022 0.587 0.830
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## 2 male alive 160 252 26.9 30.8 0.736 0.709 1.180 0.602 0.841
## 3 male alive 155 243 26.9 30.6 0.733 0.704 1.151 0.602 0.846
## 4 male alive 154 245 24.3 31.7 0.741 0.688 1.146 0.584 0.839
## 5 male alive 156 247 24.1 31.5 0.715 0.706 1.129 0.575 0.821
## 6 male alive 161 253 26.5 31.8 0.780 0.743 1.144 0.607 0.893

What we are looking at now is a data frame. Visually, this is a two-dimensional table of data that includes
columns of various types (in this case, words and numbers). It is completely fine to think about the data
frame this way, but the way that R sees the data frame is as an ordered list of vectors, with each vector
having the same number of elements. I will create a smaller one to demonstrate what I mean.

eg_list <- list(A = c("X", "Y", "Z"), B = c(1, 2, 3), C = c(0.3, 0.5, -0.2));
eg_list;

## $A
## [1] "X" "Y" "Z"
##
## $B
## [1] 1 2 3
##
## $C
## [1] 0.3 0.5 -0.2

Notice that the list that I created above includes three elements, which I have named ‘A’, ‘B’, and ‘C’. Each
of these elements is a vector of length three (e.g., the first element ‘A’ is a vector that includes “X”, “Y”,
and “Z”). The whole list is called eg_list, but if I wanted to just pick out the first vector, I could do so
with the $ sign as below.

eg_list$A;

## [1] "X" "Y" "Z"

Notice how only the first list element (vector with “X”, “Y”, and “Z”) is printed. Somewhat confusingly
there are at least two other ways to get at this first list element. The notation for identifying list elements is
to enclose them in two square brackets, so if I just wanted to pull the first element of eg_list, I could also
have typed the below to get an identical result.

eg_list[[1]];

## [1] "X" "Y" "Z"

Since the first element of the list is named ‘A’, both eg_list$A and eg_list[[1]] give the same output.
There is a third option, eg_list[["A"]], which is a bit more to type, but is also more stable than the $
because $ allows for partial matching (e.g., if a list element was named ‘December’, then ‘Dec’ would work,
but be careful if you have another list element that starts with ‘Dec’!).

eg_list[["A"]];

## [1] "X" "Y" "Z"
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If we want to get individal vector elements of our list elements, we use a single square bracket. That is, say
we wanted to just pick out the second element “Y” in the list element “A”. We could do so with the following
code.

eg_list[["A"]][2];

## [1] "Y"

Note that eg_list$A[2] or eg_list[[1]][2] would also work just fine. Lists are very flexible in R, and you
can even have lists within lists, which could make the notation quite messy (e.g., eg_list[[1]][[1]][2]
for the second element of the first list in the first list – I don’t generally recommend structuring data in this
way unless you absolutely need to for some reason). In any case, it is helpful to know sometimes that when
we are reading in and working with data frames, we are really just looking at lists of equal vector lengths.
We can even turn our eg_list into a two-dimensional data frame that looks like the dat Bumpus data that
we read in earlier.

as.data.frame(x = eg_list);

## A B C
## 1 X 1 0.3
## 2 Y 2 0.5
## 3 Z 3 -0.2

See in the above how each element name became the column name above. Let’s take another look at the
dat data frame again.

head(dat);

## sex surv totlen wingext wgt head humer femur tibio skull stern
## 1 male alive 154 241 24.5 31.2 0.687 0.668 1.022 0.587 0.830
## 2 male alive 160 252 26.9 30.8 0.736 0.709 1.180 0.602 0.841
## 3 male alive 155 243 26.9 30.6 0.733 0.704 1.151 0.602 0.846
## 4 male alive 154 245 24.3 31.7 0.741 0.688 1.146 0.584 0.839
## 5 male alive 156 247 24.1 31.5 0.715 0.706 1.129 0.575 0.821
## 6 male alive 161 253 26.5 31.8 0.780 0.743 1.144 0.607 0.893

Note now that we can refer to each column in the same way that we referred to list elements (note, we could
also put dat in list form with as.list(dat)). So if we just wanted to look at wgt, then we could type
dat$wgt, dat[["wgt"]], or dat[[5]]. Because R recognises the data frame as having two dimensions, we
could also type the below to get all of the wgt values in the fifth column.

dat[,5];

## [1] 24.5 26.9 26.9 24.3 24.1 26.5 24.6 24.2 23.6 26.2 26.2 24.8 25.4 23.7 25.7
## [16] 25.7 26.5 26.7 23.9 24.7 28.0 27.9 25.9 25.7 26.6 23.2 25.7 26.3 24.3 26.7
## [31] 24.9 23.8 25.6 27.0 24.7 26.5 26.1 25.6 25.9 25.5 27.6 25.8 24.9 26.0 26.5
## [46] 26.0 27.1 25.1 26.0 25.6 25.0 24.6 25.0 26.0 28.3 24.6 27.5 31.0 28.3 24.6
## [61] 25.5 24.8 26.3 24.4 23.3 26.7 26.4 26.9 24.3 27.0 26.8 24.9 26.1 26.6 23.3
## [76] 24.2 26.8 23.5 26.9 28.6 24.7 27.3 25.7 29.0 25.0 27.5 26.0 25.3 22.6 25.1
## [91] 23.2 24.4 25.1 24.6 24.0 24.2 24.9 24.1 24.0 26.0 24.9 25.5 23.4 25.9 24.2
## [106] 24.2 27.4 24.0 26.3 25.8 26.0 23.2 26.5 24.2 26.9 27.7 23.9 26.1 24.6 23.6
## [121] 26.0 25.0 24.8 22.8 24.8 24.6 30.5 24.8 23.9 24.7 26.9 22.6 26.1 24.8 26.2
## [136] 26.1
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Note that the square brackets above identify the row and column to select in dat. Empty values are
interpreted as ‘select all’, meaning that dat[,] is the same as writing dat – both select the entire data set.
To select, e.g., only the first five columns of data, we could use dat[,1:5] (recall that 1:5 produces the
sequence of integers, 1, 2, 3, 4, 5). If instead we wanted to select the first three rows, then we could
use dat[1:3, ]. And if we wanted only the first three rows and first five columns, we could use dat[1:3,
1:5]. The point is that the numbers listed within the square brackets refer to the rows and columns of the
data frame, and we can use this to manipulate the data.

Here is a simple example. In this data set, the last five columns are measured in inches (all of the other length
measurements are in mm). Assume that we wanted to put them into mm to match the ‘totlen’, ‘wingext’,
and ‘head’ measurements. We just need to then multiply all of the values in the last five columns (columns
7-11) by 25.4 (1 inch equals 25.4 mm). We could do this column by column. For example, to multiply all of
the values in the seventh column humer, we could use the following code.

dat[["humer"]] <- dat[["humer"]] * 25.4;

Verbally, what I have done above is to assign dat[["humer"]] to a new value of dat[["humer"]] * 25.4
– that is, I have multiplied the column dat[["humer"]] by 25.4 and inserted the result back into the dat
array. A short-cut for doing the rest of them all at once (columns 8-11) is below.

dat[,8:11] <- dat[,8:11] * 25.4;

I am mixing and matching the notation a bit just to get you used to seeing a couple different versions (as
a side note, R allows us to assign in both directions, so we could have also typed dat[,8:11] * 25.4 ->
dat[,8:11];, though it is very rare to do it this way). Now we should have a data set with the last five
columns in mm rather than inches.

head(dat);

## sex surv totlen wingext wgt head humer femur tibio skull stern
## 1 male alive 154 241 24.5 31.2 17.4498 16.9672 25.9588 14.9098 21.0820
## 2 male alive 160 252 26.9 30.8 18.6944 18.0086 29.9720 15.2908 21.3614
## 3 male alive 155 243 26.9 30.6 18.6182 17.8816 29.2354 15.2908 21.4884
## 4 male alive 154 245 24.3 31.7 18.8214 17.4752 29.1084 14.8336 21.3106
## 5 male alive 156 247 24.1 31.5 18.1610 17.9324 28.6766 14.6050 20.8534
## 6 male alive 161 253 26.5 31.8 19.8120 18.8722 29.0576 15.4178 22.6822

Maybe we want to save this data set as a CSV file. To do so, we can use the write.csv function as below.

write.csv(x = dat, file = "Bumpus_data_mm.csv", row.names = FALSE);

There will now be a new file ‘Bumpus_data_mm.csv’ in the working directory with the changes that we
made to it (converting inches to mm). Note my use of the argument row.names = FALSE. This is just
because the write.csv function, somewhat annoyingly, will otherwise assume that we want to insert a first
column of row names, which will show up as integer values (i.e., a new first column with the sequence, 1, 2,
3, . . . , 136).

Now that you have a handle on how to refer to rows, columns, and individual values of a data set, I will
introduce some functions in R that might be useful for managing data. If at any time we want to look at
what objects we have available in Rstudio, then we can use the ls function below.
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ls();

## [1] "dat" "eg_list"

The above output should make sense because we have assigned dat and eg_list. Now say we want to get
rid of the eg_list that I assigned. We can remove it using the rm function.

rm(eg_list);

The eg_list should now be removed from R and not appear anymore if I type ls().

ls();

## [1] "dat"

Now let’s look more at dat. Let’s say that I want to find out about the attributes of this object. I can use
the attributes function to learn more.

attributes(dat);

## $names
## [1] "sex" "surv" "totlen" "wingext" "wgt" "head" "humer"
## [8] "femur" "tibio" "skull" "stern"
##
## $row.names
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136
##
## $class
## [1] "data.frame"

You can now see the names (column names, which recall are also vector element names), row names, and
the class of the object. Note that not all objects will have the same (or indeed any) attributes. But the
attributes that we can see gives us a bit of information, and we can actually refer to the attributes themselves
with the equivalently named names, row.names, and class functions. For example, if we wanted to get all
of the names of dat, we could use the code below.

names(dat);

## [1] "sex" "surv" "totlen" "wingext" "wgt" "head" "humer"
## [8] "femur" "tibio" "skull" "stern"

The same would work for row.names and class. We can also pull out information for individual columns
of data. If, for example, we wanted a quick count of the alive versus dead individual sparrows in the data
set, we could use the table function.
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table(dat$surv);

##
## alive dead
## 72 64

If we wanted the set of unique totlen values, then we could use the unique function.

unique(dat$totlen);

## [1] 154 160 155 156 161 157 159 158 162 166 163 165 153 164 167 152

Let’s say that we wanted to know if a sparrow has total length greater than 160. We could use the code
below to get a TRUE/FALSE vector for which ‘TRUE’ indicates a length over 160 and a ‘FALSE’ indicates
a length of 160 or less.

dat$totlen > 160;

## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [13] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [37] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
## [61] FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [85] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
## [97] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [121] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
## [133] TRUE FALSE TRUE TRUE

The above looks a bit messy, but it can be quite useful if we also know that R interprets TRUE as having a
value of 1, and FALSE as having a value of 0. We can actually get R to confirm this itself, e.g., by checking
if FALSE == 1.

FALSE == 1;

## [1] FALSE

It does not. But now we can check if FALSE == 0.

FALSE == 0;

## [1] TRUE

We could do the same for TRUE and confirm that TRUE == 1. Since TRUE is equivalent to 1 and FALSE is
equivalent to 0, a numeric version of the TRUE/FALSE vector above would look like the below.
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as.numeric(dat$totlen > 160);

## [1] 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
## [38] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0
## [75] 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
## [112] 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1

Compare the above to the equivalent TRUE/FALSE vector to confirm that they are the same. We can use this
to our advantage to count all of the sparrows whose length exceeds 160.

sum(dat$totlen > 160);

## [1] 55

Note that what we have done is produce that same TRUE/FALSE vector as above, but then summed up all
the values. Because TRUE values are 1 and FALSE values are 0, the number of TRUE values get counted up.
We can do multiple comparisons though too. Say that we wanted to find out the number of individuals that
have a total length either greater than 160 mm or less than or equal to 155 mm. We could make this work
using the ‘or’ operator, represented in R by a vertical line |.

sum(dat$totlen > 160 | dat$totlen <= 155);

## [1] 76

Notice how the | separates the two comparisons, and the <= sign is used to indicate ‘less than or equals to’
(a >= would indicate ‘greater than or equal to, and == is simply ’equal to’, as we saw above).

We could also try to pull out a subset of individuals who have a total length greater than 160 mm and are
female. We could make this work using the ‘and’ operator, represented by an ampersand in R, &.

sum(dat$totlen > 160 & dat$sex == "female");

## [1] 14

Notice how the & separates the two comparisons and “female” is placed in quotes (else R will look for an
object called ‘female’ and come up empty with an error message – try this out!).

Now say we wanted to identify the row numbers of the individuals with a total length above 165 mm. We
could first find these individuals and assign their rows to a new variable using the which function.

inds_gt_165 <- which(dat$totlen > 165);
inds_gt_165;

## [1] 18 57 59 79 83 84 86

Now that we have these rows of individuals with a total length above 165 mm, we could use these values in
inds_gt165 to view just these rows of the dat data frame.
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dat[inds_gt_165,];

## sex surv totlen wingext wgt head humer femur tibio skull stern
## 18 male alive 166 253 26.7 32.5 19.4818 19.4310 31.2420 15.2400 22.3012
## 57 male dead 166 251 27.5 31.5 18.2880 17.5514 28.3972 15.5448 21.5138
## 59 male dead 166 250 28.3 32.4 19.1516 18.2372 29.9466 15.4178 23.2664
## 79 male dead 166 245 26.9 31.7 18.1610 17.6530 28.1178 15.2654 21.5138
## 83 male dead 166 256 25.7 31.7 19.1008 19.0754 30.1498 15.1130 21.7932
## 84 male dead 167 255 29.0 32.2 19.4310 18.9230 30.4038 16.2052 21.7170
## 86 male dead 166 254 27.5 31.4 19.3040 18.8468 28.5496 15.3416 23.2156

Notice how the values of totlen are all above 165, and the row numbers to the left match the values in
inds_gt_165. One more quick trick – say that we wanted to check if a living individual was in this subset
(obviously we can see that the first one is alive, but pretend for a moment that the data frame was much
larger). We could use the %in% operator to check.

"alive" %in% dat$surv;

## [1] TRUE

Again, note how ‘alive’ is placed in quotes. We could also check to see if numeric values are in the data set.
For example, we could ask if the value ‘250’ appears anywhere in dat$wingext.

250 %in% dat$wingext;

## [1] TRUE

Next, I want to demonstrate three useful functions in R, tapply, apply, and lapply. All of these functions
essentially apply some other function across an array, table, or list. Say that we want to find the means of
females and males in the data set. We could do this with the tapply function.

tapply(X = dat$totlen, INDEX = dat$sex, FUN = mean);

## female male
## 157.9796 160.4253

Note that in the above, the argument X is what we want to do the calculations across (total length), INDEX
does the calculation for each unique element in the vector (i.e., ‘female’ and ‘male’ in dat$sex), and FUN
indicates the function (‘mean’ in this case, but we could do ‘sd’, ‘length’, ‘sum’, or any other calculation
that we want). We could use all of this to calculate, e.g., the standard error of females and males.

N_dat <- tapply(X = dat$totlen, INDEX = dat$sex, FUN = length);
SD_dat <- tapply(X = dat$totlen, INDEX = dat$sex, FUN = sd);
SE_dat <- SD_dat / sqrt(N_dat);
SE_dat;

## female male
## 0.5220396 0.3435868

The function lapply works similarly, but over lists. We can remake that example list from earlier.
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eg_list <- list(A = c("X", "Y", "Z"), B = c(1, 2, 3), C = c(0.3, 0.5, -0.2));
eg_list;

## $A
## [1] "X" "Y" "Z"
##
## $B
## [1] 1 2 3
##
## $C
## [1] 0.3 0.5 -0.2

If we wanted to confirm the length of each of the three list elements, we could do so with lapply.

lapply(X = eg_list, FUN = length);

## $A
## [1] 3
##
## $B
## [1] 3
##
## $C
## [1] 3

We can try to use a function like ‘mean’ too, but note that we cannot get the mean of “X”, “Y”, and “Z”,
as this does not make any sense. If we try to do it, then R will give us an answer of NA for the first element
with a warning, then calculate the means of the numeric elements.

lapply(X = eg_list, FUN = mean);

## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA

## $A
## [1] NA
##
## $B
## [1] 2
##
## $C
## [1] 0.2

Finally, the function apply works similarly on arrays of numbers. That is, we need to have an object with
two (or more) dimensions in which every element is a number. To get an example, we can just use the last
nine columns of dat (i.e., everything except sex and surv). We can define this below in a new object.

dat_array <- dat[,3:11];
head(dat_array);
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## totlen wingext wgt head humer femur tibio skull stern
## 1 154 241 24.5 31.2 17.4498 16.9672 25.9588 14.9098 21.0820
## 2 160 252 26.9 30.8 18.6944 18.0086 29.9720 15.2908 21.3614
## 3 155 243 26.9 30.6 18.6182 17.8816 29.2354 15.2908 21.4884
## 4 154 245 24.3 31.7 18.8214 17.4752 29.1084 14.8336 21.3106
## 5 156 247 24.1 31.5 18.1610 17.9324 28.6766 14.6050 20.8534
## 6 161 253 26.5 31.8 19.8120 18.8722 29.0576 15.4178 22.6822

Now say that we wanted to get the mean value of every column. We could go through individually and find
mean(dat_array$totlen), mean(dat_array$wingext), etc., or we could use apply.

apply(X = dat_array, MARGIN = 2, FUN = mean);

## totlen wingext wgt head humer femur tibio skull
## 159.54412 245.25735 25.52500 31.57279 18.59691 18.10852 28.79258 15.30126
## stern
## 21.33432

The MARGIN argument is the only different one from lapply and tapply, and it is a bit confusing at first.
It states the dimension over which the function will be applied, with 1 representing rows and 2 representing
columns. This makes more sense when you consider that numeric arrays (unlike data frames) can have any
number of dimensions. For example, consider this three dimensional array.

eg_array <- array(data = 1:64, dim = c(4, 4, 4));
eg_array;

## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 5 9 13
## [2,] 2 6 10 14
## [3,] 3 7 11 15
## [4,] 4 8 12 16
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 17 21 25 29
## [2,] 18 22 26 30
## [3,] 19 23 27 31
## [4,] 20 24 28 32
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 33 37 41 45
## [2,] 34 38 42 46
## [3,] 35 39 43 47
## [4,] 36 40 44 48
##
## , , 4
##
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## [,1] [,2] [,3] [,4]
## [1,] 49 53 57 61
## [2,] 50 54 58 62
## [3,] 51 55 59 63
## [4,] 52 56 60 64

See how the array has four rows, four columns, and four different layers. Now if we wanted to pull out, e.g.,
the first row and second column of the fourth layer, we could do so with square brackets as below.

eg_array[1, 2, 4];

## [1] 53

We could also use apply across the third dimension (which I’ve been calling ‘layer’) to get the mean of each.

apply(X = eg_array, MARGIN = 3, FUN = mean);

## [1] 8.5 24.5 40.5 56.5

We could even get the mean column value for each layer with the somewhat confusing notation below.

apply(X = eg_array, MARGIN = c(1, 3), FUN = mean);

## [,1] [,2] [,3] [,4]
## [1,] 7 23 39 55
## [2,] 8 24 40 56
## [3,] 9 25 41 57
## [4,] 10 26 42 58

You will probably never need to actually do this, but it is possible. To read the above, note that the each
row represents a layer in the original eg_array, and each column represents a row of that layer. So, e.g.,
the mean of 1, 5, 9, and 13 is 7; the mean of 2, 6, 10, and 14 is 8, and so forth. Moving onto the next layer,
the mean of 17, 21, 25, and 29 is 23. Again, you will almost never need to do this, but it can be useful if
you are working with multidimensional arrays.

There are a lot more tips and tricks that I could potentially introduce here, but I will leave it to you to
explore a bit. In the next session, we will look at out to write custom R functions, followed by how to use
loops in R. Both of these topics are extremely useful for R coding.
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