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Introduction: What is ordination?

Ordination is a method for investigating and visualising multivariate data. It allows us to look at and
understand variation in a data set when there are too many dimensions to see everything at once. Imagine
a data set with four different variables. I have simulated one below.

Variable_1 Variable_2 Variable_3 Variable_4
Sample_1 -0.7236856 -1.3591433 -1.6712325 -1.588549
Sample_2 2.0788423 2.4514350 2.1145455 -1.123792
Sample_3 3.1649333 2.8321705 4.1831791 7.282465
Sample_4 -3.1726236 -2.3265953 0.5712554 4.486252
Sample_5 -1.6070815 0.0501117 3.9340254 -1.438754
Sample_6 7.5250046 5.9170097 5.4483955 5.368584
Sample_7 4.3137854 2.5330561 -2.9918645 -2.062663
Sample_8 6.1743481 4.5477932 5.7721815 4.923474
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Variable_1 Variable_2 Variable_3 Variable_4
Sample_9 3.5726232 4.7588030 0.1830870 -3.184797
Sample_10 5.7337034 5.9010724 -3.5966345 1.000840
Sample_11 5.9147585 4.0113201 7.6189799 -0.010047
Sample_12 -1.6770434 -3.4549830 2.6262476 1.610962

We could look at the distribution of each variable in columns 1-4 individually using a histogram. Or we
could use a scatterplot to look at two variables at the same time, with one variable plotted in one dimension
(horizontal x-axis) and a second variable plotted orthogonally (i.e., at a right angle) in another dimension
(y-axis). I have done this below with a histogram for Variable_1, and with a scatterplot of Variable_1
versus Variable_2. The numbers in the scatterplot points correspond to the sample number (i.e., rows
1-12).
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Since we do not have four dimensions of space for plotting, we cannot put all four variables on a scatterplot
that we can visualise with an axis for each variable. Hence, in the scatterplot to the right above, we are
ignoring Variable_3 and Variable_4.

For variables 1 and 2, we can see that Sample_1 is similar to Sample_5 because the points are close together,
and that Sample_1 is different from Sample_6 because the points are relatively far apart. But it might be
useful to see the distance between Sample_1, Sample_5, and Sample_6 while simultaneously taking into
account Variables 3 and 4. More generally, it would be useful to see how distant different points are from
one another given all of the dimensions in the data set. Ordination methods are a tools that try to do this,
allowing us to visualise high-dimensional variation in data in a reduced number of dimensions (usually two).

It is important to emphasise that ordination is a tool for exploring data and reducing dimensionality; it is
not a method of hypothesis testing (i.e., not a type of linear model). Variables in ordinations are interpreted
as response variables (i.e., y variables in models where yi = β0 + β1xi + ϵi). Ordinations visualise the
total variation in these variables, but do not test relationships between dependent (x) and independent (y)
variables.

These notes will focus entirely on Principal Component Analysis (PCA), which is just one of many ordination
methods (perhaps the most commonly used). After reading these notes, you should have a clear conceptual
understanding of how a PCA is constructed, and how to read one when you see one in the literature. You
should also be able to build your own PCA in R using the code below. For most biologists and environmental
sciences, this should be enough knowledge to allow you use PCA effectively in your own research. I have
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therefore kept the maths to a minimum when explaining the key ideas, putting all of the matrix algebra
underlying PCA into a single section toward the end.

Principal Component Analysis: key concepts

Imagine a scatterplot of data, with each variable getting its own axis representing some kind of measurement.
If there are only two variables, as with the scatterplot above, then we would only need an x-axis and a y-axis
to show the exact position of each data point in data space. If we add a third variable, then we would need
a z-axis, which would be orthogonal to the x-axis and y-axis (i.e., three dimensions of data space). If we
need to add a fourth variable, then we would need yet another axis along which our data points could vary,
making the whole data space extremely difficult to visualise. As we add yet more variables and more axes,
the position that our data points occupy in data space becomes impossible to visualise.

Principal Component Analysis (PCA) can be interpreted as a rotation of data in this multi-dimensional
space. The distance between data points does not change at all; the data are just moved around so that the
total variation in the data set is easier to see. If this verbal explanation is confusing, that is okay; a visual
example should make the idea easier to understand. To make everything easy to see, I will start with only
two dimensions using Variable_1 and Variable_2 from earlier (for now, just ignore the existence of Variables
3 and 4). Notice from the scatterplot that there is variation in both dimensions of the data; the variance of
Variable_1 is 12.97, and the variance of Variable_2 is 10.29. But these variables are also clearly correlated.
A sample for which Variable_1 is measured to be high is also very likely measure a high value of Variable_2
(perhaps these are measurements of animal length and width).

What if we wanted to show as much of the total variation as possible just on the x-axis? In other words,
rotate the data so that the maximimum amount of variance in the full data set (i.e., in the scatterplot) falls
along the x-axis, with any variation remaining being left to fall along the y-axis? To do this, we need to draw
a line that cuts through our two dimensions of space in the direction where the data are most stretched out
(i.e., have the highest variance); this direction is our first Principal component, PC1. I have drawn
it below in red (left panel).
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To build our PCA, all that we need to do is take this red line and drag it to the x-axis so that it overlaps
with y = 0 (right panel). As we move Principal Component 1 (PC1) to the x-axis, we bring all of the data
points with it, preserving their distances from PC1 and each other. Notice in the panel to the right above
that the data have the same shape as they do in the panel to the left. The distances between points have
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not changed at all; everything has just been moved. Sample_1 and Sample_5 are just as close to each other
as they were in the original scatterplot, and Sample_1 and Sample_6 are just as far away.

Principal Component 1 shows that maximum amount of variation that is possible to show in one dimension
while preserving these distances between points. What little variation that remains is in PC2. Since we have
maximised the amount of variation on PC1, there can be no additional covariation left between the x-axis
and the y-axis. If any existed, then we would need to move the line again because it would mean that more
variation could be still placed along the x-axis (i.e., more variation could be squeezed out of the covariation
between variables). Hence, PC1 and PC2 are, by definition, uncorrelated. Note that this does not mean
that Variable 1 and Variable 2 are not correlated (they obviously are!), but PC1 and PC2 are not. This is
possible because PC1 and PC2 represent a mixture of Variables 1 and 2. They no longer represent a specific
variable, but a linear combination of multiple variables.

This toy example with two variables can be extended to any number of variables and principal components.
PCA finds the axis along which variation is maximised in any number of dimensions and makes that line
PC1. In our example with two variables, this completed the PCA because we were only left with one other
dimension, so all of the remaining variation had to go in PC2. But when there are more variables and
dimensions, the data are rotated again around PC1 so that the maximum amount of variation is shown
in PC2 after PC1 is fixed. For three variables, imagine a cloud of data points; first put a line through
the most elonated part of the cloud and reorient the whole thing so that this most elongated part is the
width of the cloud (x-axis), then spin it again along this axis so that the next widest part is the height of
the cloud (y-axis). The same idea applies for data in even higher dimensional space; the data are rotated
orthogonally around each additional Principal Component so that the amount of variation explained with
each gets progressively smaller (in practice, however, all of this rotating is done simultaneously by the matrix
algebra).

There are a few additional points to make before moving on to some real data. First, PCA is not useful if
the data are entirely uncorrelated. To see why, take a look at the plot of two hypothetical (albeit ridiculous)
variables in the lower left panel. The correlation between the two variables is zero, and there is no way to
rotate the data to increase the amount of variation shown on the x-axis. The PCA on the lower right is
basically the same figure, just moved so that the centre is on the origin.
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Second, if two variables are completely correlated, the maths underlying PCA does not work because a
singluar matrix is created (this is the matrix algebra equivalent of dividing by zero). Here is what it looks
like visually if two variables are completely correlated.
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The panel on the left shows two perfectly correlated variables. The panel on the right shows what the PCA
would look like. Note that there is no variation on PC2. One hundred percent of the variation can be
described using PC1, meaning that if we know the value of Variable_1, then we can certain about the value
of Variable_2.

I will now move on to introduce a morphological data set collected in 2010 from a fig wasp community
surrounding the Sonoran Desert rock fig (Ficus petiolaris). These data were originally published in Duthie,
Abbott, and Nason (2015), and they are publicly available on GitHub.

Fig wasp morphological data

The association between fig trees and their pollinating and seed-eating wasps is a classic example of mu-
tualism. The life-histories of figs and pollinating fig wasps are well-known and fascinating (Janzen 1979;
Weiblen 2002), but less widely known are the species rich communities of non-pollinating exploiter species
of fig wasps (Borges 2015). These non-pollinating fig wasps make use of resources within figs in a variety
of ways; some lay eggs into developing fig ovules without pollinating, while others are parasitoids of other
wasps. All of these wasps develop alongside the pollinators and seeds within the enclosed inflorescence of
figs, and emerge as adults typically after several weeks. Part of my doctoral work focused on the community
of fig wasps that lay eggs in the figs of F. petiolaris in Baja, Mexico (Duthie, Abbott, and Nason 2015;
Duthie and Nason 2016).
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The community of non-pollinators associated with F. petiolaris includes five species of the genera Idarnes
(3) and Heterandrium (2). Unlike pollinators, which climb into a small hole of the enclosed infloresence and
pollinate and lay eggs from inside, these non-pollinators drill their ovipositors directly into the wall of the
fig. The left panel below shows a fig sliced in half (which often results in hundreds of fig wasps emerging
from the inside). The right panel shows a fig on a branch.

The whole fig wasp community is shown below. The pollinator is in panel ‘a’, while, panels ‘b-h’ show the
non-pollinators (panels ‘g’ and ‘h’ show a host-parasitoid pair).
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As part of a test for evidence of a dispersal-fecundity tradeoff in the fig wasps in panels ‘b-f’, I estimated
the mean wing loading of each species using body volume (body volume divided by wing surface area). This
included 11 morphological measurements in total.

fig_wasps <- read.csv("data/wing_loadings.csv", header = TRUE);
fig_cols <- colnames(fig_wasps);
print(fig_cols);

## [1] "Species" "Site" "Tree"
## [4] "Fruit" "Head_Length_mm" "Head_Width_mm"
## [7] "Thorax_Length_mm" "Thorax_Width_mm" "Abdomen_Length_mm"
## [10] "Abdomen_Width_mm" "Ovipositor_Length_mm" "Ovipositor_Width_mm"
## [13] "Forewing_Area_mm.2" "Hindwing_Area_mm.2" "Forewing_Length_mm"

Below, I will run a PCA in R to look at the total variation in non-pollinating fig wasp morphology. To keep
things simple, I will focus just on the two species of Heterandrium (panels ‘e, f’ in the image above).

Principal Component Analysis in R

First, I will trim down the data set in fig_wasps that I read in above to remove all species that are not in
the genus Heterandrium. There are two species of Heterandrium that I will put into a single data set.
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het1 <- fig_wasps[fig_wasps[,1] == "Het1",] # Species in panel 'f' above
het2 <- fig_wasps[fig_wasps[,1] == "Het2",] # Species in panel 'e' above
het <- rbind(het1, het2);

This leaves us with a data frame with 32 rows and 15 columns. In total, there are 16 measurements from
samples of ‘Het1’ and 16 measurements from samples of ‘Het2’.

Because PCA requires matrix manipulations, we need the R object holding the data to be a matrix. To do
this, we can get rid of the first four columns of data. These columns include the species names, and the site,
tree, and fruit from which the fig wasp was collected.

dat <- het[,-(1:4)]; # Remove columns 1 through 4

We now need to define dat as a matrix.

dat <- as.matrix(dat);

This leaves us with the final version of the data set that we will use. It includes 11 columns of morphological
measurements.

head(dat);

## Head_Length_mm Head_Width_mm Thorax_Length_mm Thorax_Width_mm
## [1,] 0.566 0.698 0.767 0.494
## [2,] 0.505 0.607 0.784 0.527
## [3,] 0.511 0.622 0.769 0.511
## [4,] 0.479 0.601 0.766 0.407
## [5,] 0.545 0.707 0.828 0.561
## [6,] 0.525 0.651 0.852 0.590
## Abdomen_Length_mm Abdomen_Width_mm Ovipositor_Length_mm
## [1,] 1.288 0.504 0.376
## [2,] 1.059 0.430 0.274
## [3,] 1.107 0.504 0.359
## [4,] 1.242 0.446 0.331
## [5,] 1.367 0.553 0.395
## [6,] 1.408 0.618 0.350
## Ovipositor_Width_mm Forewing_Area_mm.2 Hindwing_Area_mm.2
## [1,] 0.098 1.339 0.294
## [2,] 0.072 0.890 0.195
## [3,] 0.062 0.975 0.214
## [4,] 0.065 0.955 0.209
## [5,] 0.081 1.361 0.361
## [6,] 0.085 1.150 0.308
## Forewing_Length_mm
## [1,] 2.122
## [2,] 1.765
## [3,] 1.875
## [4,] 1.794
## [5,] 2.130
## [6,] 1.981

These 11 columns are our variables 1-11. Our fly measurements thereby occupy some position in 11-
dimensional space on 11 orthogonal axes, which is way too complex to visualise all at once. We can first
take a look at all of the possible scatterplots using pairs.
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pairs(x = dat, gap = 0, cex.labels = 0.5);
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There is not much that we can infer from this, except that most of the variables appear to be highly
correlated. A PCA is therefore likely to be useful. Before building the PCA, it is probably a good idea
to scale all of our variables. This would be especially important if we had variables measured in different
units. If we do not scale the variables to have the same mean and standard deviation, then the PCA could
potentially be affected by the units in which variables were measured, which does not make sense. If, for
example, we had measured thorax length and width in mm2, but abdomen length and width in cm2, then we
would get thorax measurements contributing more to PC1 just because the measured values would be larger
(if you do not believe me, try multiplying all values in one column of the data by 10 or 100, then re-run
the PCA below). For data sets that include measurements with much different unit scales (e.g., pH versus
elevation in metres above sea level), this is especially problematic. I will therefore scale the data below.

dat <- scale(dat);

Now every variable has a mean of zero and a standard deviation of one. We are finally ready to build our
PCA, using only one line of code.

pca_dat <- prcomp(dat);

That is it. Here is what the output looks like when printed out. Do not worry about the details. I will come
back to explain it later.

## Standard deviations (1, .., p=11):
## [1] 2.5247440 1.3801063 1.0554983 0.7327957 0.5851569 0.5002464 0.4027246
## [8] 0.3451656 0.3368968 0.2424040 0.1538419
##
## Rotation (n x k) = (11 x 11):
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## PC1 PC2 PC3 PC4
## Head_Length_mm -0.34140280 0.163818591 -0.28767452 0.12186387
## Head_Width_mm -0.37329512 0.009539983 -0.18750714 -0.02689984
## Thorax_Length_mm -0.31043223 0.212467054 -0.34643613 0.07575953
## Thorax_Width_mm -0.32914664 -0.026143927 -0.12608860 0.52180693
## Abdomen_Length_mm -0.35080667 0.215792603 -0.12967361 -0.02261804
## Abdomen_Width_mm -0.09942693 0.628750876 0.20976550 -0.20080986
## Ovipositor_Length_mm 0.18174394 0.587847182 -0.03746881 -0.21192676
## Ovipositor_Width_mm -0.26652653 -0.260592830 -0.19455961 -0.77915529
## Forewing_Area_mm.2 -0.34255769 -0.133512606 0.39772561 -0.03554531
## Hindwing_Area_mm.2 -0.25340037 0.132093495 0.65445796 0.05921015
## Forewing_Length_mm -0.34758221 -0.191325254 0.24411693 -0.09382015
## PC5 PC6 PC7 PC8
## Head_Length_mm -0.08112505 0.505176595 -0.01398414 0.364561108
## Head_Width_mm -0.17070577 0.120110305 0.03774836 0.474486398
## Thorax_Length_mm 0.54292261 -0.176608183 -0.42642232 -0.304654846
## Thorax_Width_mm -0.56028055 -0.113250947 0.14497291 -0.500898934
## Abdomen_Length_mm 0.22638163 -0.196597233 0.12804621 0.005214056
## Abdomen_Width_mm -0.25555292 -0.542657091 0.10605929 0.215945914
## Ovipositor_Length_mm 0.01296918 0.530782226 0.27984207 -0.397709709
## Ovipositor_Width_mm -0.32473973 -0.002741201 -0.17249250 -0.261382659
## Forewing_Area_mm.2 0.21024273 0.065140892 0.23416076 -0.001060866
## Hindwing_Area_mm.2 -0.10607059 0.258514312 -0.57477991 -0.078216349
## Forewing_Length_mm 0.27922395 0.020406736 0.52403579 -0.137734836
## PC9 PC10 PC11
## Head_Length_mm -0.225828822 0.54868461 -0.109825693
## Head_Width_mm 0.053630473 -0.71589314 0.197911013
## Thorax_Length_mm -0.328182916 -0.15625131 -0.002758449
## Thorax_Width_mm -0.022217714 -0.03937269 -0.045797240
## Abdomen_Length_mm 0.815797870 0.20281032 -0.007815979
## Abdomen_Width_mm -0.285403216 0.10473716 -0.019244867
## Ovipositor_Length_mm 0.051323247 -0.23210236 -0.014135669
## Ovipositor_Width_mm -0.003649773 0.09266248 -0.063094898
## Forewing_Area_mm.2 -0.094481435 -0.16839713 -0.751543357
## Hindwing_Area_mm.2 0.141382511 0.02013088 0.227054769
## Forewing_Length_mm -0.243686582 0.13097688 0.570684702

If we want to plot the first two principle components, we can do so with the following code. Note that
pca_dat$x is a matrix of the same size as our original data set, but with values that plot the data on the
PC axes.

par(mar = c(5, 5, 1, 1));
plot(x = pca_dat$x[,1], y = pca_dat$x[,2], asp = 1, cex.lab = 1.25,

cex.axis = 1.25, xlab = "PC1", ylab = "PC2");
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Ignore the arguments that start with cex; these are just plotting preferences. But the argument asp = 1 is
important; it ensures that one unit along the x-axis is the same distance as one unit along the y-axis. If this
were not set, then the distance between any two points might be misleading. If, for example, moving 100
pixels on the x-axis corresponded to one unit on PC1, but moving 100 pixels on the y-axis corresponded to
two units in PC2, then the variation in PC1 would look larger relative to PC2 than it should.

Note that we are not at all restricted to comparing PC1 and PC2. We can look at any of the 11 PCs that
we want. Below compares PC1 with PC3.

par(mar = c(5, 5, 1, 1));
plot(x = pca_dat$x[,1], y = pca_dat$x[,3], asp = 1, cex.lab = 1.25,

cex.axis = 1.25, xlab = "PC1", ylab = "PC3");
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Note that the points are in the same locations on the x-axis (PC1) as before, but not the y-axis (now PC3).
We have just rotated 90 degrees in our 11-dimensional space and are therefore looking at our cloud of data
from a different angle.

Recall that we had two groups in these data; two species of the genus Heterandrium. Now that we have
plotted the position of all wasp measurements, we can also fill in the PCA with colours representing each
species. This allows us to visualise how individuals in different groups are separated in our data.

par(mar = c(5, 5, 1, 1));
plot(x = pca_dat$x[,1], y = pca_dat$x[,2], asp = 1, cex.lab = 1.25,

cex.axis = 1.25, xlab = "PC1", ylab = "PC2");
h1_rw <- which(het[,1] == "Het1"); # Recall the original data set
h2_rw <- which(het[,1] == "Het2"); # Recall the original data set
points(x = pca_dat$x[h1_rw,1], y = pca_dat$x[h1_rw,2], pch = 20, col = "red");
points(x = pca_dat$x[h2_rw,1], y = pca_dat$x[h2_rw,2], pch = 20, col = "blue");
legend("topleft", fill = c("red", "blue"), cex = 1.5,

legend = c( expression(paste(italic("Heterandrium "), 1)),
expression(paste(italic("Heterandrium "), 2))));
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From the groups overlaid onto the PCA, it is clear that these two species of Heterandrium differ in their
morphological measurements. Often groups are not so clearly distinguished (i.e., data are usually more
messy), and it is important to again remember that the PCA is not actually testing any statistical hypothesis.
It is just plotting the data. If we wanted to test whether or not the difference between species measurements
was statistically significant, then we would need to use some sort of appropriate multivariate test, such as
a MANOVA (that is, a linear model with multiple continuous dependent variables and a single categorical
independent variable), or an appropriate randomisation approach.

We can look at the amount of variation explained by each PC by examining pca_dat$sdev, which reports
the standard deviations of the principal components.

pca_variance <- (pca_dat$sdev) * (pca_dat$sdev); # Get variance
print(pca_variance);

## [1] 6.37433235 1.90469347 1.11407673 0.53698949 0.34240864 0.25024647
## [7] 0.16218711 0.11913928 0.11349942 0.05875972 0.02366733

To make it more easy to interpret the variances along each PC, we can use a screeplot. There is a function
for this in base R, which takes the direct output of the prcomp function.
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screeplot(pca_dat, npcs = 11, main = "", type = "lines", cex.lab = 1.5);
V

ar
ia

nc
es

0
1

2
3

4
5

6

1 2 3 4 5 6 7 8 9 10 11

The screeplot above provides a useful indication of how much variation explained decreases per PC (or how
much variation is explained by the first n axes). To make things even easier to visualise, it might help to
present the above in terms of per cent of the variance explained on each axis.

pca_pr_explained <- pca_variance / sum(pca_variance);
print(pca_pr_explained);

## [1] 0.579484759 0.173153952 0.101279703 0.048817227 0.031128058 0.022749679
## [7] 0.014744282 0.010830844 0.010318129 0.005341792 0.002151575

Note that all of the values above sum to 1. It appears that about 75.26 per cent of the total variation is
explained by PC1 and PC2, so we are looking at a lot of variation in the PCA showed above. We can plot
the proportion of the variation explained by each PC in a bar plot.

pc_names <- paste("PC", 1:length(pca_pr_explained), sep = "");
barplot(height = pca_pr_explained * 100, names = pc_names, cex.names = 0.8,

ylab = "Per cent of total variation explained", cex.lab = 1.25);
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Notice that the general pattern of the barplot above is the same as the screeplot.

We can also look at a biplot (i.e., a loading plot). The biplot below shows the first two principal components
(data points are now numbers 1 to 32, indicating the sample or row number of the fig wasp from the original
scaled data set, dat), but also the direction of each of our original variables (morphological measurements)
in relation to these principal components.

biplot(pca_dat, cex = 0.8, asp = 1);
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The direction of the red arrows shows the relationships among the 11 different variables. Intuitively, variables
with arrows pointing in similar directions are positively correlated, while those pointing in opposite directions
are negatively correlated (more technically, the cosine of the angle between arrows, in radians, actually equals
the correlation between them; e.g., cos(0) = 1 and cos(π) = -1; recall that π radians equals 180 degrees).
In the above example, wasp head width and thorax width are highly correlated because the two arrows are
pointing in very similar directions. In contrast, ovipositor length and ovipositor width appear to be pointing
in very different directions on PC1 and PC2, suggesting that the two variables are negatively correlated.

The direction of these arrows is determined by the loading of each variable on PC1 and PC2. The loading is
the value that you would need to multiply each variable by to get the score of a data point on the principal
component. The loadings can be found in the pca_dat results as pca_dat$rotation. I will just show the
loadings for the first two principle components below.
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print(pca_dat$rotation[,1:2]); # Note: 11 total columns; one for each PC

## PC1 PC2
## Head_Length_mm -0.34140280 0.163818591
## Head_Width_mm -0.37329512 0.009539983
## Thorax_Length_mm -0.31043223 0.212467054
## Thorax_Width_mm -0.32914664 -0.026143927
## Abdomen_Length_mm -0.35080667 0.215792603
## Abdomen_Width_mm -0.09942693 0.628750876
## Ovipositor_Length_mm 0.18174394 0.587847182
## Ovipositor_Width_mm -0.26652653 -0.260592830
## Forewing_Area_mm.2 -0.34255769 -0.133512606
## Hindwing_Area_mm.2 -0.25340037 0.132093495
## Forewing_Length_mm -0.34758221 -0.191325254

We can see how the loadings of each variable match up with each arrows by going back to the output of
pca_dat. To get the direction of the arrows, we need to multiply the loadings in pca_dat$rotation above
by the standard deviation of each principle component in pca_dat$sdev. I do this below to show how we
can manually reproduce the position of the red arrows from the pca_dat output.

biplot(pca_dat, cex = 0.8, asp = 1);
# Note that the arrows are scaled by a factor of ca 4.5, hence the scaling below
points(x = 4.5 * pca_dat$sdev[1] * pca_dat$rotation[,1],

y = 4.5 * pca_dat$sdev[2] * pca_dat$rotation[,2],
col = "blue", pch = 20, cex = 1.5);
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I hope that this clarifies how to produce and interpret a PCA, a screeplot, and a biplot in R. I also hope that
the output that I showed earlier generated generated from prcomp(dat) is now clear. For one last illustration
to further connect this output with the PCA, I will reproduce a PCA just from the original data points in
dat and the loadings for PC1 and PC2 found in the output of prcomp(dat), pca_dat. For each fly, we take
the sum of each measurement times its corresponding loading on PC1 and PC2. Hence, the position of the
first wasp in dat (first row) on PC1 would be found by multipling dat[1,] times pca_dat$rotation[,1].
Here is a reminder of what dat[1,] looks like.

## Head_Length_mm Head_Width_mm Thorax_Length_mm
## 1.3692840 1.7033618 0.3158512
## Thorax_Width_mm Abdomen_Length_mm Abdomen_Width_mm
## 0.2036821 0.8331580 -0.4356985
## Ovipositor_Length_mm Ovipositor_Width_mm Forewing_Area_mm.2
## -0.7493047 2.4779288 1.5324901
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## Hindwing_Area_mm.2 Forewing_Length_mm
## 0.1659505 1.6125831

Here are the loadings for PC1 (pca_dat$rotation[,1]).

## Head_Length_mm Head_Width_mm Thorax_Length_mm
## -0.34140280 -0.37329512 -0.31043223
## Thorax_Width_mm Abdomen_Length_mm Abdomen_Width_mm
## -0.32914664 -0.35080667 -0.09942693
## Ovipositor_Length_mm Ovipositor_Width_mm Forewing_Area_mm.2
## 0.18174394 -0.26652653 -0.34255769
## Hindwing_Area_mm.2 Forewing_Length_mm
## -0.25340037 -0.34758221

We calculate the sum of each element multiplied together: (1.369284 × -0.3414028) + (1.7033618 × -
0.3732951) + ... + (1.6125831 × -0.3475822). This gives a value of -3.4415217, which is the location of the
first data point on PC1. When we do this calculation for PC1 and PC2 for all of the data, we can get the
coordinates to plot on our PCA. I do this with the code below. Note that the for loop is just cycling through
each individual wasp sample (do not worry about this if the code is unfamiliar).

plot(x = 0, y = 0, type = "n", xlim = c(-6.2, 4.2), ylim = c(-4, 3), asp = 1,
xlab = "PC1", ylab = "PC2", cex.axis = 1.25, cex.lab = 1.25);

for(i in 1:dim(dat)[1]){ # Take the sum of the measurements times PC loadings
pt_PC1 <- sum(dat[i,] * pca_dat$rotation[,1]); # measurements times loadings 1
pt_PC2 <- sum(dat[i,] * pca_dat$rotation[,2]); # measurements times loadings 2
points(x = pt_PC1, y = pt_PC2, cex = 4, col = "black", pch = 20);
text(x = pt_PC1, y = pt_PC2, col = "white", labels = i, cex = 0.8);

}
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Those who are satisfied with their conceptual understanding of PCA, and the ability to use PCA in R, can
stop here. In the next section, I will explain how PCA works mathematically.

Principal Component Analysis: matrix algebra

A Principal Component Analysis is basically just an eigenanalysis of a covariance matrix. I will present the
maths underlying this and show the calculations in some detail, but a full explanation of matrix algebra, and
eigenvalues and eigenvectors is beyond the scope of these notes. Following my approach in the key concepts
section above, I am going to try to present the key calculations and some of the key mathematical ideas
using two dimensions to make everything easier to calculate and visualise. First, a reminder of what our
simulated data look like from the first section.

## Variable_1 Variable_2 Variable_3 Variable_4
## Sample_1 -0.7236856 -1.3591433 -1.6712325 -1.58854923
## Sample_2 2.0788423 2.4514350 2.1145455 -1.12379150
## Sample_3 3.1649333 2.8321705 4.1831791 7.28246495
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## Sample_4 -3.1726236 -2.3265953 0.5712554 4.48625203
## Sample_5 -1.6070815 0.0501117 3.9340254 -1.43875416
## Sample_6 7.5250046 5.9170097 5.4483955 5.36858433
## Sample_7 4.3137854 2.5330561 -2.9918645 -2.06266268
## Sample_8 6.1743481 4.5477932 5.7721815 4.92347440
## Sample_9 3.5726232 4.7588030 0.1830870 -3.18479651
## Sample_10 5.7337034 5.9010724 -3.5966345 1.00084040
## Sample_11 5.9147585 4.0113201 7.6189799 -0.01004697
## Sample_12 -1.6770434 -3.4549830 2.6262476 1.61096188

Again, I am just going to use the first two columns of data, so I will create a truncated data set eg_m using
just two of the columns from above.

eg_m <- eg_mat[,1:2]; # Now we have an R object with just two columns

We can start by just running a PCA as we did in the section above with pr_comp.

prcomp(eg_m);

## Standard deviations (1, .., p=2):
## [1] 4.7445030 0.8646784
##
## Rotation (n x k) = (2 x 2):
## PC1 PC2
## Variable_1 0.7494272 0.6620868
## Variable_2 0.6620868 -0.7494272

Here is our starting point, with standard deviations and loadings for each PC that we know are correct.
Now we can attempt to do this whole analysis manually, without the prcomp function. To start, we need
to get the covariance matrix of the data. A covariance matrix is just a square matrix in which off-diagonal
elements hold the covariance between variable Xi and Xj in row i and column j. Diagonal elements (upper
left to lower right) hold the variance of variable Xi (i.e., the covariance between Xi and itself, where i is
both the row and column),

V =
[

V ar(X1), Cov(X1, X2)
Cov(X2, X1), V ar(X2)

]
.

Covariance and variance are calculated as usual. In R, we can easily get the covariance matrix using the cov
function.

V <- cov(eg_m); # Variance covariance matrix of two simulated measurements
print(V);

## Variable_1 Variable_2
## Variable_1 12.97046 10.79831
## Variable_2 10.79831 10.28752

Note that the matrix is symmetric, meaning that the V equals its own transpose (i.e., we can swap the
elements in row i column j for the elements in row j column i and get the same matrix). What we need
now are the eigenvalues and eigenvectors of V. R will calculate these with the function eigen, which I will
do below.
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eigen(V); # Eigenvalues and eigenvectors of V

## eigen() decomposition
## $values
## [1] 22.5103085 0.7476688
##
## $vectors
## [,1] [,2]
## [1,] -0.7494272 0.6620868
## [2,] -0.6620868 -0.7494272

Notice that the eigenvectors are identical to the loadings from our prcomp(eg_m) above. This is because our
principle components are just the eigenvectors of the covariance matrix. Similarly, the eigenvalues printed
above are just the variances of each principal component, equal to the standard deviations output from
prcomp(eg_m) squared. If we take the square root of them, we get the standard devations back.

What are eigenvectors and eigenvalues, really? I will try to explain without being too formal with the
mathematics. First, a very quick review of vectors. We can imagine a vector x as an arrow pointing to some
point in multidimensional space, and represented by a list of numbers that indicate how far from the origin
it points in each dimension. For a really simple example, we can take the vector x = (2, 1), and visualise it
on a plane.

u <- c(2, 1);
plot(x = 0, y = 0, type = "n", xlim = c(-1, 3), ylim = c(-1, 3), xlab = "",

ylab = "");
arrows(x0 = 0, y0 = 0, x1 = u[1], y1 = u[2], length = 0.1, lwd = 3);
abline(h = 0, lty = "dotted", lwd = 0.8);
abline(v = 0, lty = "dotted", lwd = 0.8);

−1 0 1 2 3

−
1

0
1

2
3

An eigenvector (u) is a vector that can be multiplied by its corresponding eigenvalue (λ) to give the same
vector as you would get by multiplying a matrix V by the same eigenvector,

Vu = λu.
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It is important to remember that matrix multiplication is different from scalar multiplication. When we
multiply two matrices, we do not just multiply the element in row i and column j in one matrix by row
i and column j in the other matrix. Matrix multiplication is a series of multiplying row elements of one
matrix by the column elements of another, and summing these products between elements. It will be easier
to illustrate with an example. Take our covariance matrix V and the example vector x. By multiplying row
1 by the column vector x, then row 2 by the column vector x, we get the following vector,

[
12.97, 10.8
10.8, 10.29

] [
2
1

]
=

[
36.74
31.88

]
We can confirm this the long way by getting the first element of the product, (12.97 × 2) + (10.8 × 1) =
36.74. Likewise, we get the second element, (10.8 × 2) + (10.29 × 1) = 31.89. Now, note that if we take our
covariance matrix V and multiply it by one of our eigenvectors calculated with eigen above (Vu), we get
the same answer as if we mutliplied our single eigenvalue by the eigenvector,

[
12.97, 10.8
10.8, 10.29

] [
−0.75
−0.66

]
= 22.51

[
−0.75
−0.66

]
Try confirming for yourself that the two sides of this equation are in fact equal (note that for the right side,
you just multiply the scalar 22.51 to each element as normal, so the first element in the product vector would
be (22.51 × -0.75) = -16.8825. Mathematically, multiplying the covariance matrix by one of its eigenvectors
changes the size of that vector (but, critically, not its direction) by the same amount as multiplying it by its
corresponding eigenvalue. The eigenvector associated with the leading eigenvalue (i.e., the largest eigenvalue)
is therefore the direction along which most of the total variation lies in multidimensional space (PC1), and
the eigenvalue itself is the variance in this direction.

I will not go through the algebra of solving for the eigenvalues and eigenvectors here (but I could probably
be convinced to do given sufficient demand). But I will point out one more equation that might help clarify
the mathematics a bit further. Note that we can recreate the the covariance matrix (V) just using the
eigenvalues and eigenvectors,

V = UΛU−1.

In the above, V is our covariance matrix, U is a matrix of our eigenvectors, and Λ is a diagonal matrix of
our eigenvalues (i.e., a matrix where all off-diagonal elements are zero). The negative one exponent at the
end tells us to find the inverse of U; this is just the matrix that we need to multiply U by to get back to
the identity matrix (a matrix with ones in the diagonal and zeros everywhere else). We can see what this
looks like using the eigenvalues that we calculated above from eigen(V).

U <- eigen(V)$vectors;
print(U);

## [,1] [,2]
## [1,] -0.7494272 0.6620868
## [2,] -0.6620868 -0.7494272

We can get the inverse using solve in R.

U_inv <- solve(U);
print(U_inv);
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## [,1] [,2]
## [1,] -0.7494272 -0.6620868
## [2,] 0.6620868 -0.7494272

Matrix multiplication in R is performed using %*% instead of *, so we can see the relationship between U
and U_inv below.

U %*% U_inv; # Identity matrix, with a bit of a rounding error.

## [,1] [,2]
## [1,] 1.000000e+00 0
## [2,] 1.110223e-16 1

Mathematically, here is what that looks like.

[
1, 0
0, 1

]
=

[
−0.75, 0.66
−0.66, −0.75

] [
−0.75, −0.66
0.66, −0.75

]
Hence, the inverse of a matrix is the scalar equivalent of 1 = x(1/x). We just have a value of one in each
dimension. Putting this all together, we can get back to our original covariance matrix by inserting our
eigenvalues into the right side of the equation.

[
12.97, 10.8
10.8, 10.29

] [
−0.75, 0.66
−0.66, −0.75

] [
22.51, 0

0, 0.75

] [
−0.75, −0.66
0.66, −0.75

]
We can confirm all of this in R using our matrices V, U, and U_inv, and creating a new square diagonal
matrix holiding the eigenvalues, L.

L <- matrix(data = 0, nrow = 2, ncol = 2);
L[1, 1] <- eigen(V)$values[1];
L[2, 2] <- eigen(V)$values[2];
# We can print these matrices below.
print(V); print(U); print(U_inv); print(L);

## Variable_1 Variable_2
## Variable_1 12.97046 10.79831
## Variable_2 10.79831 10.28752

## [,1] [,2]
## [1,] -0.7494272 0.6620868
## [2,] -0.6620868 -0.7494272

## [,1] [,2]
## [1,] -0.7494272 -0.6620868
## [2,] 0.6620868 -0.7494272

## [,1] [,2]
## [1,] 22.51031 0.0000000
## [2,] 0.00000 0.7476688

Finally, we can replicate the right hand side of the equation above to get back our original covariance matrix
from the eigenvalues and eigenvectors.
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U %*% L %*% U_inv;

## [,1] [,2]
## [1,] 12.97046 10.79831
## [2,] 10.79831 10.28752

We have now shown the mathematical relationship between our covariance matrix and its associated eigen-
vectors and eigenvalues.

Conclusions

Ordination is a useful tool for visualising and thinking about the variation of multivariate data. Principal
Components Analysis is one method of ordination, but there are others such as Non-metric Multidimensional
Scaling (NMDS), Principal Coordinates Analysis (PCoA), and Canonical Variates Analysis (CVA). These
different types of ordination are useful for different purposes and different data sets, so it is worth learning
a bit about them before deciding what type of ordination is most appropriate for your own data. My hope
is that this detailed breakdown of PCA will help you understand the general objectives of ordination, give
you the ability to use PCA in your own research, and make it easier to learn new ordination methods.
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