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Introduction: Simulating data

The ability generate simulated data is very useful in a lot of research contexts. Simulated data can be used to
better understand statistical methods, or in some cases to actually run statistical analyses (e.g., simulating
a null distribution against which to compare a sample). Here I want to demonstrate how to simulate data
in R. This can be accomplished with base R functions including rnorm, runif, rbinom, rpois, or rgamma;
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all of these functions sample univariate data (i.e., one variable) from a specified distribution. The function
sample can be used to sample elements from an R object with or without replacement. Using the MASS
library, the mvtnorm function will sample multiple variables with a known correlation structure (i.e., we can
tell R how variables should be correlated with one another) and normally distributed errors.

Below, I will first demonstrate how to use some common functions in R for simulating data. Then, I will
illustrate how these simulated data might be used to better understand common statistical analyses and
data visualisation.

Univariate random numbers

Below, I introduce some base R functions that simulate (pseudo)random numbers from a given distribution.
Note that most of what follows in this section is a recreation of a similar section in the notes for randomisation
analysis in R.

Sampling from a uniform distribution

The runif function returns some number (n) of random numbers from a uniform distribution with a range
from a (min) to b (max) such that X ∼ U(a, b) (verbally, X is sampled from a uniform distribution with the
parameters a and b), where −∞ < a < b < ∞ (verbally, a is greater than negative infinity but less than b,
and b is finite). The default is to draw from a standard uniform distribution (i.e., a = 0 and b = 1) as done
below.

rand_unifs_10 <- runif(n = 10, min = 0, max = 1);

The above code stores a vector of ten numbers rand_unifs_10, shown below. Note that the numbers will
be different each time we re-run the runif function above.

## [1] 0.26030195 0.58919966 0.07031305 0.27408554 0.57796705 0.60746196
## [7] 0.01563063 0.67288649 0.91994100 0.55364508

We can visualise the standard uniform distribution that is generated by plotting a histogram of a very large
number of values created using runif.

rand_unifs_10000 <- runif(n = 10000, min = 0, max = 1);
hist(rand_unifs_10000, xlab = "Random value (X)", col = "grey",

main = "", cex.lab = 1.5, cex.axis = 1.5);
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The random uniform distribution is special in some ways. The algorithm for generating random uniform
numbers is the starting point for generating random numbers from other distributions using methods such
as rejection sampling, inverse transform sampling, or the Box Muller method (Box and Muller 1958).

Sampling from a normal distribution

The rnorm function returns some number (n) of randomly generated values given a set mean (µ; mean) and
standard deviation (σ; sd), such that X ∼ N (µ, σ2). The default is to draw from a standard normal (a.k.a.,
“Gaussian”) distribution (i.e., µ = 0 and σ = 1).

rand_norms_10 <- rnorm(n = 10, mean = 0, sd = 1);

The above code stores a vector of 10 numbers, shown below.

## [1] -0.7131560 -0.4735036 0.3816503 -1.2008142 -0.3763529 0.5344435
## [7] 0.3729368 -0.6031522 -1.0657826 -0.4197172

We can verify that a standard normal distribution is generated by plotting a histogram of a very large
number of values created using rnorm.

rand_norms_10000 <- rnorm(n = 10000, mean = 0, sd = 1);
hist(rand_norms_10000, xlab = "Random value (X)", col = "grey",

main = "", cex.lab = 1.5, cex.axis = 1.5);
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Generating a histogram using data from a simulated distribution like this is often a useful way to visualise
distributions, or to see how samples from the same distribution might vary. For example, if we wanted to
compare the above distribution with a normal distribution that had a standard deviation of 2 instead of 1,
then we could simply sample 10000 new values in rnorm with sd = 2 instead of sd = 1 and create a new
histogram with hist. If we wanted to see what the distribution of sampled data might look like given a low
sample size (e.g., 10), then we could repeat the process of sampling from rnorm(n = 10, mean = 0, sd =
1) multiple times and looking at the shape of the resulting histogram.

Sampling from a poisson distribution

Many processes in biology can be described by a Poisson distribution. A Poisson process describes events
happening with some given probability over an area of time or space such that X ∼ Poisson(λ), where the
rate parameter λ is both the mean and variance of the Poisson distribution (note that by definition, λ > 0,
and although λ can be any positive real number, data are always integers, as with count data). Sampling
from a Poisson distribution can be done in R with rpois, which takes only two arguments specifying the
number of values to be returned (n) and the rate parameter (lambda).

rand_poissons <- rpois(n = 10, lambda = 1.5);
print(rand_poissons);

## [1] 2 3 3 3 4 1 3 2 2 3

There are no default values for rpois. We can plot a histogram of a large number of values to see the
distribution when λ = 4.5 below.

rand_poissons_10000 <- rpois(n = 10000, lambda = 4.5);
hist(rand_poissons_10000, xlab = "Random value (X)", col = "grey",

main = "", cex.lab = 1.5, cex.axis = 1.5);
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Sampling from a binomial distribution

Sampling from a binomial distribution in R with rbinom is a bit more complex than using runif, rnorm, or
rpois. Like those previous functions, the rbinom function returns some number (n) of random numbers, but
the arguments and output can be slightly confusing at first. Recall that a binomial distribution describes
the number of ‘successes’ for some number of independent trials (Pr(success) = p). The rbinom function
returns the number of successes after size trials, in which the probability of success in each trial is prob.
For a concrete example, suppose we want to simulate the flipping of a fair coin 1000 times, and we want to
know how many times that coin comes up heads (‘success’). We can do this with the following code.

coin_flips <- rbinom(n = 1, size = 1000, prob = 0.5);
print(coin_flips);

## [1] 525

The above result shows that the coin came up heads 525 times. Note, however, the (required) argument n
above. This allows the user to set the number of sequences to run. In other words, if we set n = 2, then
this could simulate the flipping of a fair coin 1000 times once to see how many times heads comes up, then
repeating the whole process a second time to see how many times heads comes up again (or, if it is more
intuitive, the flipping of two separate fair coins 1000 times).

coin_flips_2 <- rbinom(n = 2, size = 1000, prob = 0.5);
print(coin_flips_2);

## [1] 521 485

In the above, a fair coin was flipped 1000 times and returned 521 heads, and then another fair coin was
flipped 1000 times and returned 485 heads. As with the rnorm and runif functions, we can check to see
what the distribution of the binomial function looks like if we repeat this process. Suppose, in other words,
that we want to see the distribution of the number of times heads comes up after 1000 flips. We can, for
example, simulate the process of flipping 1000 times in a row with 10000 different coins using the code below.
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coin_flips_10000 <- rbinom(n = 10000, size = 1000, prob = 0.5);

I have not printed the above coin_flips_10000 for obvious reasons, but we can use a histogram to look at
the results.

hist(coin_flips_10000, xlab = "Random value (X)", col = "grey",
main = "", cex.lab = 1.5, cex.axis = 1.5);

Random value (X)

F
re

qu
en

cy

440 460 480 500 520 540 560

0
50

0
15

00
25

00

As would be expected, most of the time ‘heads’ occurs around 500 times out of 1000, but usually the actual
number will be a bit lower or higher due to chance. Note that if we want to simulate the results of individual
flips in a single trial, we can do so as follows.

flips_10 <- rbinom(n = 10, size = 1, prob = 0.5);

## [1] 1 0 1 0 0 0 0 0 1 1

In the above, there are n = 10 trials, but each trial consists of only a single coin flip (size = 1). But we
can equally well interpret the results as a series of n coin flips that come up either heads (1) or tails (0).
This latter interpretation can be especially useful to write code that randomly decides whether some event
will happen (1) or not (0) with some probability prob.

Random sampling using sample

Sometimes it is useful to sample a set of values from a vector or list. The R function sample is very
flexible for sampling a subset of numbers or elements from some structure (x) in R according to some
set probabilities (prob). Elements can be sampled from x some number of times (size) with or without
replacement (replace), though an error will be returned if the size of the sample is larger than x but
replace = FALSE (default).
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Sampling random numbers from a list
To start out simple, suppose we want to ask R to pick a random number from one to ten with equal
probability.

rand_number_1 <- sample(x = 1:10, size = 1);
print(rand_number_1);

## [1] 7

The above code will set rand_number_1 to a randomly selected value, in this case 7. Because we have not
specified a probability vector prob, the function assumes that every element in 1:10 is sampled with equal
probability. We can increase the size of the sample to 10 below.

rand_number_10 <- sample(x = 1:10, size = 10);
print(rand_number_10);

## [1] 7 10 5 8 3 4 1 6 2 9

Note that all numbers from 1 to 10 have been sampled, but in a random order. This is becaues the default
is to sample with replacement, meaning that once a number has been sampled for the first element in
rand_number_10, it is no longer available to be sampled again. To change this and allow for sampling with
replacement, we can change the default.

rand_number_10_r <- sample(x = 1:10, size = 10, replace = TRUE);
print(rand_number_10_r);

## [1] 8 7 3 3 2 5 9 1 2 3

Note that the numbers {2, 3} are now repeated in the set of randomly sampled values above. We can also
specify the probability of sampling each element, with the condition that these probabilities need to sum
to 1. Below shows an example in which the numbers 1-5 are sampled with a probability of 0.05, while the
numbers 6-10 are sampled with a probability of 0.15, thereby biasing sampling toward larger numbers.

prob_vec <- c( rep(x = 0.05, times = 5), rep(x = 0.15, times = 5) );
rand_num_bias <- sample(x = 1:10, size = 10, replace = TRUE, prob = prob_vec);
print(rand_num_bias);

## [1] 2 6 9 10 2 2 9 1 9 9

Note that rand_num_bias above contains more numbers from 6-10 than from 1-5.

Sampling random characters from a list
Sampling characters from a list of elements is no different than sampling numbers, but I am illustrating it
separately because I find that I often sample characters for conceptually different reasons. For example, if I
want to create a simulated data set that includes three different species, I might create a vector of species
identities from which to sample.

species <- c("species_A", "species_B", "species_C");

This gives three possible categories, which I can now use sample to draw from. Assume that I want to
simulate the sampling of these three species, perhaps with species_A being twice as common as species_B
and species_C. I might use the following code to sample 24 times.
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sp_sample <- sample(x = species, size = 24, replace = TRUE,
prob = c(0.5, 0.25, 0.25)
);

Below are the values that get returned.

## [1] "species_A" "species_C" "species_A" "species_C" "species_A" "species_A"
## [7] "species_C" "species_C" "species_A" "species_A" "species_B" "species_A"
## [13] "species_A" "species_B" "species_A" "species_B" "species_A" "species_A"
## [19] "species_A" "species_A" "species_C" "species_A" "species_A" "species_B"

Simulating data with known correlations

We can generate variables X1 and X2 that have known correlations ρ with with one another. The code below
does this for two standard normal random variables with a sample size of 10000, such that the correlation
between them is 0.3.

N <- 10000;
rho <- 0.3;
x1 <- rnorm(n = N, mean = 0, sd = 1);
x2 <- (rho * x1) + sqrt(1 - rho*rho) * rnorm(n = N, mean = 0, sd = 1);

Mathematically, these variables are generated by first simulating the sample x1 (x1 above) from a standard
normal distribution. Then, x2 (x2 above) is calculated as below,

x2 = ρx1 +
√

1 − ρ2xrand,

Where xrand is a sample from a normal distribution with the same variance as x1. A simple call to the R
function cor will confirm that the correlation does indeed equal rho (with some sampling error).

cor(x1, x2);

## [1] 0.2997275

This is useful if we are only interested in two variables, but there is a much more efficient way to generate
any number of variables with different variances and correlations to one another. To do this, we need to use
the MASS library, which can be installed and loaded as below.

install.packages("MASS");
library("MASS");

In the MASS library, the function mvrnorm can be used to generate any number of variables for a pre-specified
covariance structure.

Suppose we want to simulate a data set of three measurements from a species of organisms. Measurement
1 (M1) has a mean of µM1 = 159.54 and variance of V ar(M1) = 12.68, measurement 2 (M2) has a mean of
µM1 = 245.26 and variance of V ar(M2) = 30.39, and measurement 3 (M2) has a mean of µM1 = 25.52 and
variance of V ar(M3) = 2.18. Below is a table summarising.
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measurement mean variance
M1 159.54 12.68
M2 245.26 30.39
M3 25.52 2.18

Further, we want the covariance between M1 and M2 to equal Cov(M1, M2) = 13.95, the covariance between
M1 and M3 to equal Cov(M1, M3) = 3.07, and the covariance between M2 and M3 to equal Cov(M2, M3) =
4.7. We can put all of this information into a covariance matrix V with three rows and three columns. The
diagonal of the matrix holds the variances of each variable, with the off-diagonals holding the covariances
(note also that the variance of a variable M is just the variable’s covariance with itself; e.g., V ar(M1) =
Cov(M1, M1)).

V =

 V ar(M1), Cov(M1, M2), Cov(M1, M3)
Cov(M2, M1), V ar(M2), Cov(M2, M3)
Cov(M3, M1), Cov(M3, M2), V ar(M3)

 .

In R, we can create this matrix as follows.

matrix_data <- c(12.68, 13.95, 3.07, 13.95, 30.39, 4.70, 3.07, 4.70, 2.18);
cv_mat <- matrix(data = matrix_data, nrow = 3, ncol = 3, byrow = TRUE);
rownames(cv_mat) <- c("M1", "M2", "M3");
colnames(cv_mat) <- c("M1", "M2", "M3");

Here is what cv_mat looks like (note that it is symmetrical along the diagonal).

## M1 M2 M3
## M1 12.68 13.95 3.07
## M2 13.95 30.39 4.70
## M3 3.07 4.70 2.18

Now we can add the means to a vector in R.

mns <- c(159.54, 245.26, 25.52);

We are now ready to use the mvrnorm function in R to simulate some number n of sampled organisms with
these three measurements. We use the mvrnorm arguments mu and Sigma to specify the vector of means and
covariance matrix, respectively.

sim_data <- mvrnorm(n = 40, mu = mns, Sigma = cv_mat);

Here are the example data below.

M1 M2 M3
163.6518 243.0293 27.50490
153.2536 234.2305 22.35618
158.1672 243.1517 24.39938
161.3257 251.3148 23.35492
162.1920 257.0307 26.26973
153.8770 243.3345 24.61258
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M1 M2 M3
158.1259 251.1981 24.52671
160.5229 248.4448 27.96243
157.2187 243.2872 23.46458
158.2091 249.9774 24.22677
164.1557 249.9719 26.54893
157.7288 243.4278 24.41553
157.7326 245.0448 24.92287
158.1038 247.6874 25.55243
152.6896 231.8753 25.38396
157.4173 240.6230 22.70699
160.9749 240.0718 25.73651
156.7864 246.9460 26.26664
158.1673 244.0407 23.99257
153.8627 239.9618 24.35657
155.7099 243.9635 26.05590
157.8196 243.6506 23.02626
160.2522 249.9039 26.26784
158.3961 245.5127 26.68749
160.4448 245.6159 25.29746
161.0740 247.0418 24.73032
158.0939 247.3563 28.70769
157.4622 241.8673 24.86231
164.4666 249.6383 28.84425
156.5644 234.9602 22.79125
158.7013 244.1753 25.29089
161.5468 248.9817 27.12725
163.6412 256.3574 27.04064
158.3780 249.8303 24.71480
159.0816 244.0004 26.29937
162.4331 249.9222 25.57570
157.5452 247.0619 24.14479
156.2691 241.8423 23.96189
162.0215 240.9311 24.96541
157.5077 244.3142 26.08924

We can check to confirm that the mean values of each column are correct using apply.

apply(X = sim_data, MARGIN = 2, FUN = mean);

## M1 M2 M3
## 158.78931 245.28942 25.27605

And we can check to confirm that the covariance structure of the data is correct using cov.

cov(sim_data);

## M1 M2 M3
## M1 8.509932 9.859769 2.421537
## M2 9.859769 27.186711 3.618141
## M3 2.421537 3.618141 2.460394
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Note that the values are not exact, but should become closer to the specified values as increase the sample
size n. We can visualise the data too; for example, we might look at the close correlation between M1 and
M2 using a scatterplot, just as we would for data sampled from the field.

par(mar = c(5, 5, 1, 1));
plot(x = sim_data[,1], y = sim_data[,2], pch = 20, cex = 1.25, cex.lab = 1.25,

cex.axis = 1.25, xlab = expression(paste("Value of ", M[1])),
ylab = expression(paste("Value of ", M[2])));

154 156 158 160 162 164

23
5

24
0

24
5

25
0

25
5

Value of M1

V
al

ue
 o

f M
2

We could even run an ordination on these simulated data. For example, we could extract the principle
components with prcomp, then plot the first two PCs to visualise these data. We might, for example, want
to compare different methods of ordination using a data set with different, pre-specified properties (e.g.,
Minchin 1987). We might also want to use simulated data sets to investigate how different statistical tools
perform. I show this in the next section, where I put a full data set together and run linear models on it.

Simulating a full data set

Putting everything together, here I will create a data set of three different species from which three different
measurements are taken. We can just call these measurements ‘length’, ‘width’, and ‘mass’. For simplicity,
let us assume that these measurements always covary in the same way that we saw with V (i.e., cv_mat)
above. But let’s also assume that we have three species with slightly different mean values. Below is the
code that will build a new data set of N = 20 samples with four columns: species, length, width, and mass.

N <- 20;
matrix_data <- c(12.68, 13.95, 3.07, 13.95, 30.39, 4.70, 3.07, 4.70, 2.18);
cv_mat <- matrix(data = matrix_data, nrow = 3, ncol = 3, byrow = TRUE);
mns_1 <- c(159.54, 245.26, 25.52);
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sim_data_1 <- mvrnorm(n = N, mu = mns, Sigma = cv_mat);
colnames(sim_data_1) <- c("Length", "Width", "Mass");
# Below, I bind a column for indicating 'species_1' identity
species <- rep(x = "species_1", times = 20); # Repeats 20 times
sp_1 <- data.frame(species, sim_data_1);

Let us add one more data column. Suppose that we can also sample the number of offspring each organism
has, and that the mean number of offspring that an organism has equals one tenth of the organism’s mass.
To do this, we can use rpois, and take advantage of the fact that the argument lambda can be a vector
rather than a single value. So to get the number of offspring for each organism based on its body mass, we
can just insert the mass vector sp_1$Mass times 0.1 for lambda.

offspring <- rpois(n = N, lambda = sp_1$Mass * 0.1);
sp_1 <- cbind(sp_1, offspring);

I have also bound the offspring number to the data set sp_1. Here is what it looks like below.

species Length Width Mass offspring
species_1 159.9533 243.4227 22.72765 4
species_1 159.7499 244.5644 25.27408 0
species_1 164.5741 255.2495 26.59350 3
species_1 159.8969 250.5151 25.11469 3
species_1 153.7585 233.1831 23.16144 3
species_1 163.5869 254.4058 27.26223 2
species_1 158.7672 242.4418 24.28717 5
species_1 158.1837 240.0855 26.11573 1
species_1 153.8214 239.4643 23.31309 2
species_1 158.3107 245.9407 25.07996 2
species_1 160.0943 242.7369 24.44470 1
species_1 158.2343 237.7177 26.37711 3
species_1 159.4497 250.6303 26.76947 1
species_1 157.4304 241.9654 24.54231 4
species_1 155.9335 235.4176 25.89888 3
species_1 160.6861 247.2428 25.51683 1
species_1 158.0153 243.8761 26.17362 5
species_1 161.8486 241.5219 23.39056 2
species_1 162.3947 245.3846 25.30323 4
species_1 158.4513 243.3200 25.01094 4

To add two more species, let us repeat the process two more times, but change the expected mass just
slightly each time. The code below does this, and puts everything together in a single data set.

# First making species 2
mns_2 <- c(159.54, 245.26, 25.52 + 3); # Add a bit
sim_data_2 <- mvrnorm(n = N, mu = mns, Sigma = cv_mat);
colnames(sim_data_2) <- c("Length", "Width", "Mass");
species <- rep(x = "species_2", times = 20); # Repeats 20 times
offspring <- rpois(n = N, lambda = sim_data_2[,3] * 0.1);
sp_2 <- data.frame(species, sim_data_2, offspring);
# Now make species 3
mns_3 <- c(159.54, 245.26, 25.52 + 4.5); # Add a bit more
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sim_data_3 <- mvrnorm(n = N, mu = mns, Sigma = cv_mat);
colnames(sim_data_3) <- c("Length", "Width", "Mass");
species <- rep(x = "species_3", times = 20); # Repeats 20 times
offspring <- rpois(n = N, lambda = sim_data_3[,3] * 0.1);
sp_3 <- data.frame(species, sim_data_3, offspring);
# Bring it all together in one data set
dat <- rbind(sp_1, sp_2, sp_3);

Our full data set now looks like the below.

species Length Width Mass offspring
species_1 159.9533 243.4227 22.72765 4
species_1 159.7499 244.5644 25.27408 0
species_1 164.5741 255.2495 26.59350 3
species_1 159.8969 250.5151 25.11469 3
species_1 153.7585 233.1831 23.16144 3
species_1 163.5869 254.4058 27.26223 2
species_1 158.7672 242.4418 24.28717 5
species_1 158.1837 240.0855 26.11573 1
species_1 153.8214 239.4643 23.31309 2
species_1 158.3107 245.9407 25.07996 2
species_1 160.0943 242.7369 24.44470 1
species_1 158.2343 237.7177 26.37711 3
species_1 159.4497 250.6303 26.76947 1
species_1 157.4304 241.9654 24.54231 4
species_1 155.9335 235.4176 25.89888 3
species_1 160.6861 247.2428 25.51683 1
species_1 158.0153 243.8761 26.17362 5
species_1 161.8486 241.5219 23.39056 2
species_1 162.3947 245.3846 25.30323 4
species_1 158.4513 243.3200 25.01094 4
species_2 160.2528 248.5692 24.99606 3
species_2 160.7029 240.0511 24.29649 2
species_2 158.7433 248.9468 27.24495 1
species_2 157.7189 243.6334 24.78088 1
species_2 160.0190 244.2014 25.37037 3
species_2 158.2989 243.1543 24.72782 1
species_2 158.2005 239.0357 27.30184 3
species_2 158.1541 241.9820 25.68276 2
species_2 161.1973 240.4725 24.88878 3
species_2 155.9321 242.7676 24.58200 1
species_2 156.6690 237.6551 25.27099 3
species_2 159.3251 246.9798 24.29475 1
species_2 159.6979 244.5094 26.28466 1
species_2 156.1763 240.9722 24.85592 2
species_2 155.0683 240.1483 25.14894 1
species_2 159.1114 242.0123 26.48438 0
species_2 158.8586 239.3737 26.43328 4
species_2 160.3166 242.1038 24.37108 3
species_2 161.1974 241.3731 25.05036 2
species_2 159.0816 247.3352 26.40622 4
species_3 164.3057 249.7958 26.65763 3
species_3 156.6158 245.8312 24.62549 5
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species Length Width Mass offspring
species_3 158.5840 236.4036 22.29149 1
species_3 156.9685 238.9608 23.59813 3
species_3 160.9984 242.9457 25.61123 6
species_3 158.7672 247.2871 25.40712 4
species_3 163.3584 252.2415 26.60087 7
species_3 165.5165 252.1904 28.82005 3
species_3 156.6090 240.8090 25.66192 2
species_3 157.4001 248.4543 22.86118 1
species_3 156.8166 246.6605 22.70648 1
species_3 155.8112 237.6733 25.95032 2
species_3 157.9696 241.5863 24.22165 3
species_3 160.2483 251.3143 25.31238 0
species_3 163.7988 244.1552 26.75506 2
species_3 161.2938 243.0966 26.46720 2
species_3 155.4354 235.9312 25.22167 3
species_3 154.0329 236.7923 28.63467 2
species_3 157.6275 241.5606 27.85791 6
species_3 156.4345 240.2656 24.08900 2

To summarise, we now have a simulated data set of measurements from three different species, all of which
have known variances and covariances of length, width, and mass. Each species has a slightly different mean
mass, and for all species, each unit of mass increases the expected number of offspring by 0.1. Because we
know these properties of the data for certain, we can start asking questions that might be useful to know
about our data analysis. For example, given this covariance structure and these small differences in mass, is
a sample size of 20 really enough to even get a significant difference among species masses using an ANOVA?
What if we tried to test for differences among masses using some sort of randomisation approach Instead?
Would this give us more or less power? Let us run an ANOVA to see if the difference between group means
(which we know exists) is recovered.

aov_result <- aov(Mass ~ species, data = dat);
summary(aov_result);

## Df Sum Sq Mean Sq F value Pr(>F)
## species 2 1.45 0.7258 0.365 0.696
## Residuals 57 113.23 1.9865

It appears not! What about the relationship between body mass and offspring production that we know
exists? Below is a scatterplot of the data for the three different species.
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This looks like there might be a positive relationship, but it is very difficult to determine just from the
scatterplot. We can use a generalised linear model to test it with species as a random effect, as we might do
if these were data sampled from the field (do not worry about the details of the model here; the key point
is that we can use the simulated data with known properties to assess the performance of a statistical test).

library(lme4);

## Loading required package: Matrix

mod <- glmer(offspring ~ Mass + (1 | species), data = dat, family = "poisson");

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?

summary(mod);

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: offspring ~ Mass + (1 | species)
## Data: dat
##
## AIC BIC logLik deviance df.resid
## 219.5 225.8 -106.8 213.5 57
##
## Scaled residuals:
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## Min 1Q Median 3Q Max
## -1.6488 -0.7751 -0.1460 0.4443 2.5741
##
## Random effects:
## Groups Name Variance Std.Dev.
## species (Intercept) 1.979e-06 0.001407
## Number of obs: 60, groups: species, 3
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.72297 1.48979 -0.485 0.627
## Mass 0.06506 0.05843 1.113 0.266
##
## Correlation of Fixed Effects:
## (Intr)
## Mass -0.999
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?

There does not appear to be any effect here either! To get one, it appears that we will need to simulate a
larger data set (or a bigger effect size – or just get lucky when re-simulating a new data set).

Note that I have run a linear model that might be reasonable given the structure of our data. But the
advantage of working with simulated data and knowing for certain what the relationship is between the
underlying variables is that we can explore different statistical techniques. For example, we know that our
response variable offspring is count data, so we are supposed to specify a Poisson error structure using
the family = "poisson" argument above, right? But what would happen if we just used a normal error
structure anyway? Would this really be so bad? Now is the opportunity to test because we know what the
correct answer is supposed to be! Trying statistical methods that are normally ill-advised can actually be
useful here, as it can help us see for ourselves when a technique is bad – or perhaps when it really is not
(e.g., Ives 2015).

Conclusions

Simulating data can be a powerful tool for learning and investigating different statistical analyses. The main
benefits of using simulated data are flexibility and certainty. Simulation gives us the flexibility to explore any
number of hypotheticals, including different sample sizes, effect sizes, relationships between variables, and
error distributions. It also works from a point of certainty; we know what the real relationship is between
variables, and what the actual effect sizes are because we define them when generating random samples.
So if we want to better understand what would happen if we were unable to sample an important variable
in our system, or if we were to use a biased estimator, or if we we were to violate key model assumptions,
simulated data is a very useful tool.
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